MBN900D45A

Silicon N-channel IGBT

FEATURES

- * High speed, low loss IGBT module.
- * Low driving power due to low input capacitance MOS gate.
- * Low noise due to ultra soft fast recovery diode.
- * High reliability, high durability module.
- * High thermal fatigue durability. (delta Tc=70°C, N>30,000cycles)
- * Isolated head sink (terminal to base).

CIRCUIT DIAGRAM

TERMINALS

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Weight: 1200(g)

Item		Symbol	Unit	MBN900D45A	
Collector Emitter Voltage		V_{CES}	V	4,500	
Gate Emitter Voltage		V_{GES}	V	±20	
Collector Current	DC	Ic	Α	900	
Collector Current	1ms	I _{Cp}	A	1,800	
Forward Current	DC	I _F	Α	900	
r orward Current	1ms	I _{FM}	A	1,800	
Junction Temperature	Tj	°C	-40 ~ +125		
Storage Temperature		T _{stg}	°C	-40 ~ +125	
Isolation Voltage		V _{ISO}	V_{RMS}	6,000(AC 1 minute)	
Screw Torque Term	inals (M4/M8)	-	- N·m	2/10 (1)	
Mou	nting (M6)	-		6 (2)	

Notes: (1) Recommended Value 1.8±0.2/9±1N·m **ELECTRICAL CHARACTERISTICS**

Item

(2) Recommended Value 5.5±0.5N·m

0.008

0.016

0.006

Junction to case

Case to fin

Collector Emitter Cut-Off Current		I _{CES}	mA	-	-		V _{CE} =4,500V, V _{GE} =0V, Tj=25°C
				-	50	100	V _{CE} =4,500V, V _{GE} =0V, Tj=125°C
Gate Emitter Leakage Current		I_{GES}	nA	-500	-	+500	V _{GE} =±20V, V _{CE} =0V, Tj=25°C
Collector Emitter Saturation Voltage		$V_{CE(sat)}$	V	-	5.5	tbd	I _C =900A, V _{GE} =15V, Tj=125°C
Gate Emitter Threshold Voltage		$V_{GE(TO)}$	V	4.5	6.0	7.5	V _{CE} =10V, I _C =900mA, Tj=25°C
Input Capacitance		Cies	nF	-	130	-	V _{CE} =10V,V _{GE} =0V, f=100kHz, Tj=25°C
Internal Gate Resistance		Rge	Ω	-	1.5	-	V _{CE} =10V,V _{GE} =0V, f=100kHz, Tj=25°C
Switching Times	Rise Time	t _r	μs	-	1.6	2.5	V _{CC} =2,600V, Ic=900A
	Turn On Time	t _{on}		-	2.2	3.0	L=100nH
	Fall Time	t _f		-	1.9	3.0	$R_G=2.2\Omega$ (3)
	Turn Off Time	t _{off}		-	3.6	5.5	V _{GE} =±15V, Tj=125°C
Peak Forward Voltage Drop		V_{FM}	V	-	4.2	5.0	Ic=900A, V _{GE} =0V, Tj=125°C
Reverse Recovery Time		t _{rr}	μs	-	0.6		Vcc=2600V, Ic=900 A, L=100nH
							Tj=125°C
Turn On Loss		E _{on(10%)}	J/P		2.2		V _{CC} =2600, Ic=900, L=100nH
Turn Off Loss		E _{off(10%)}	J/P		2.0		$R_G=2.2\Omega$ (3)
Reverse Recovery Loss		E _{rr(10%)}	J/P		1.1	1.5	V _{GE} =±15V, Tj=125°C
Stray inductance module		Lsce	nΗ	-	13	-	
		1					

Symbol Unit Min. Typ. Max.

Notes:(3) R_G value is the test condition's value for evaluation of the switching times, not recommended value. Please, determine the suitable R_G value after the measurement of switching waveforms (overshoot voltage, etc.) with appliance mounted.

°C/W

°C/W

Rth(j-c)

Rth(j-c)

Rth(c-f)

* Please contact our representatives at order.

IGBT

FWD

Thermal Impedance

Thermal Impedance

Contact

- * For improvement, specifications are subject to change without notice.
- * For actual application, please confirm this spec sheet is the newest revision.

Test Conditions

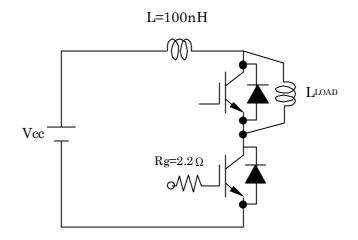


Fig 1 Switching Test circuit

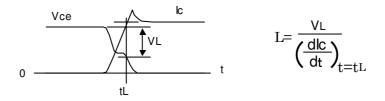


Fig 2 Difinition of stray inductance

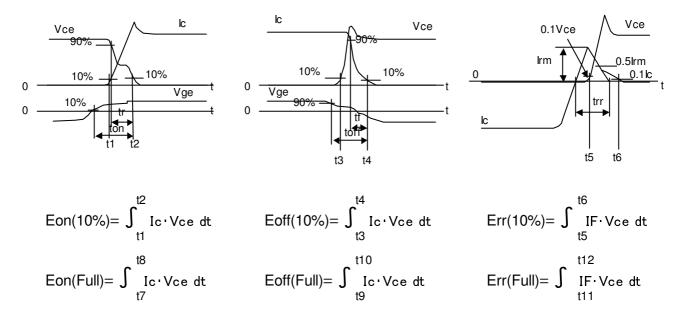
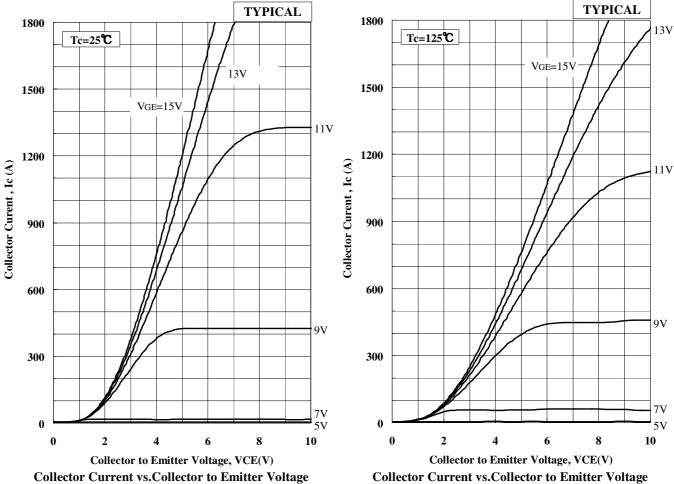
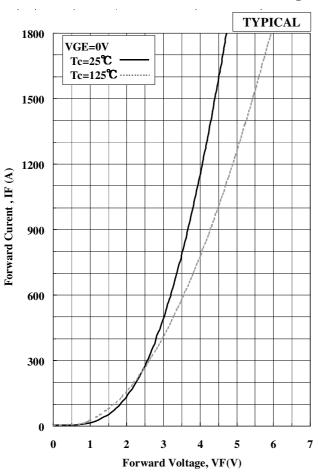




Fig. 3 Definition of switching loss

<u>IGBT MODULE</u> Spec.No.IGBT-SP-02008 R3 3

Forward Voltage of free-wheeling diode

IGBT MODULE Spec.No.IGBT-SP-02008 R3 **TYPICAL TYPICAL** [Condition] 3.0 [Condition] $VGE=\pm 15V$, $RG=2.2 \Omega$ VGE=±15V、RG=2.2Ω VD=2600V, L≒100nH, VD=2600V, L \rightleftharpoons 100nH, Tc=125°C Tc=125°C Eoff(Full) Inductive load Eon(Full) 2.5 2.0 Eoff(10%) Eon(10%) 2.0 Turn-on Loss , Eon (J/pulse) 1.5 Turn-off Loss, Eoff (J/pulse) 1.5 0.5 0.5 0.0 0.0 0 500 1000 **500** 1000 0 Collector Curent, Ic (A) Collector Curent, Ic (A) **Turn-on Loss vs. Collector Current Turn-off Loss vs.Collector Current** TYPICAL **TYPICAL** 4.0 2.5 [Condition] $VGE=\pm 15V$, $RG=2.2\Omega$ VD=2600V, L≒100nH, Tc=125°C toff Inductive load 3.5 [Condition] VGE=±15V 、RG=2.2 Ω VD=2600V 、L≒100nH、Tc=125°C 2.0 3.0 Inductive load Switching time, ton, tr, toff, tf, trr (us) Reverse Recovery Loss, Err (J/pulse) Err(Full) 1.5 Err(10%) tf 1.0 1.0 0.5 0.5 trr

0.0

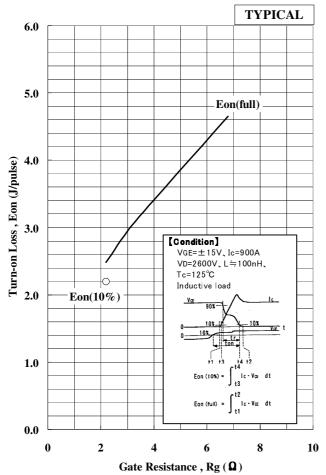
1000

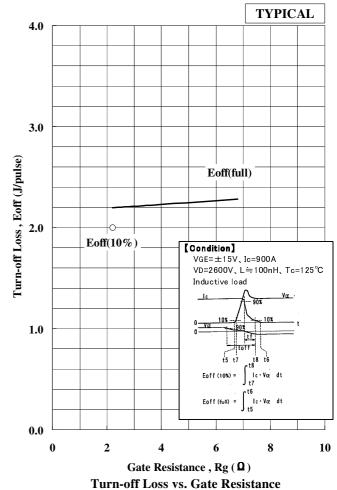
500

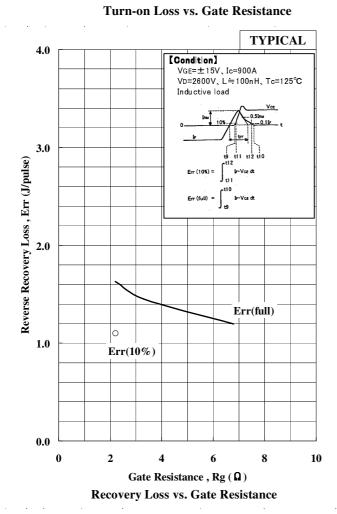
Collector Curent, Ic (A)

Recovery Loss vs. Collector Current

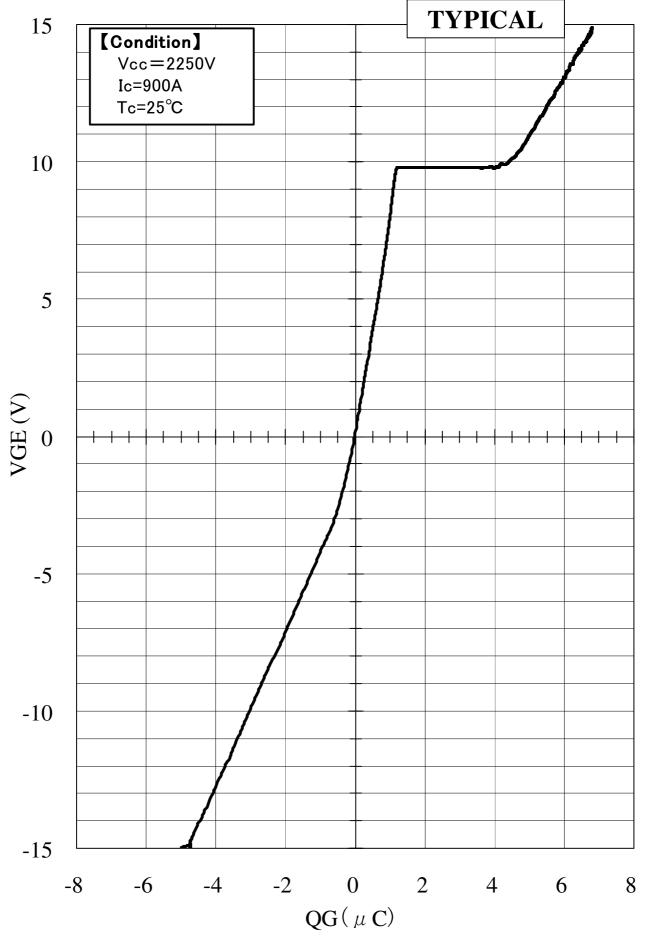
0.0

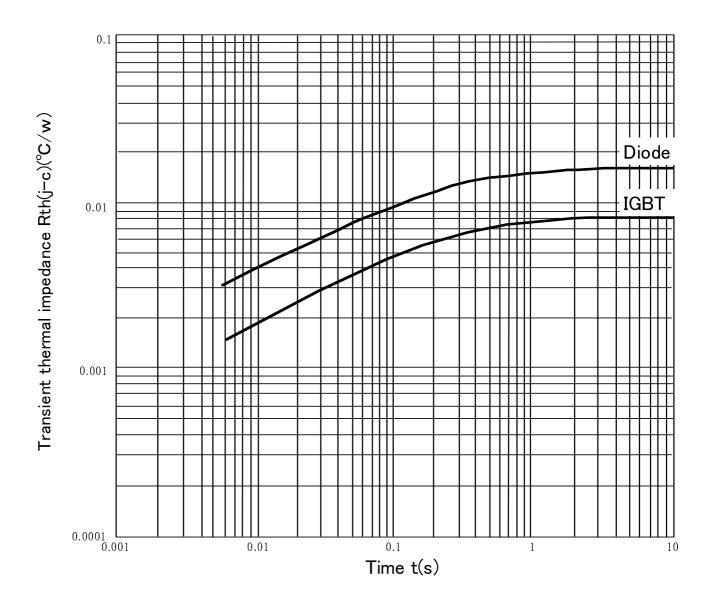



500


Collector Current , Ic (A)

Switching time vs. Collector current


1000



Qg-VGE curve

Trannsient thermal impedance

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are adviced to contact Hitachi sales department for the latest version of this data sheets.
- 2.Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3.In cases where extremely high reliability is required(such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4.In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5.In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6.No license is granted by this data sheets under any patents or other rights of any third party or Hitachi, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.pi.hitachi.co.jp/pse